APPLICATION OF THE REGULARIZATION PRINCIPLE
TO THE FORMULATION OF APPROXIMATE SOLUTIONS
OF INVERSE HEAT-CONDUCTION PROBLEMS

O. M. Alifanov UDC 536.24.01

The synthesis of a Tikhonov-regularizing algorithm is discussed for the solution of integral
equations in inverse heat-conduction problems of the first kind.

Many inverse heat-conduction problems entailing the determination of transient boundary conditions
for constant thermophysical characteristics of a solid require the solution of linear Volterra integral equa-
tions of the first kind:
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where u(r) is the desired solution (unknown heat flux, temperature at the boundary of the body, or thermal
potential density) and f is the input function, which is known with a certain approximation é.

As an example of this kind of problem we consider the determination of the heat flux admitted to a semi-
infinite body having a moving boundary and a zero-valued initial temperature distribution:
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where X(r) is the known law governing the motion of the boundary (a continuous function), T((x) is a specified
continuous differentiable function, and q(r) is an unknown function.

We reduce the problem (2)-(5) to a zero-valued boundary condition, To do so we consider a function
@), x = Cy [Cy < X(r)], continuous together with its derivative, such that ¢(x) = T(x) for x = X, OT,
/6x—0 as x —*),

It is well known [1] that the expression
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is a solution of Eq. (2) satisfying the initial condition,
The reduced problem is now stated as follows:

wx, =T, 1)—z(, 1),
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We represent the function w(x, 7) by means of the thermal potential of a simple layer:
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where v(r) is the thermal potential density.
The derivative dw(x, 7)/0x is discontinuous at the boundary x = X{r):

dwX(®)+0, 1) dw(X(), 1 v
Ox B ox 2

and its limiting value is determined by the boundary condition. As a result
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The potential density v{(r) must be determined from the known funetion f(r) by solving the following
Volterra integral equation of the first kind:
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= f(1)—z(x, 7).

This problem is the most complex link in the reconstruction of the heat flux in a semi-infinite body
with a moving boundary. ‘The required function v{(r) is unstable under perturbations of the right-hand side
due to the incorrectness of the given problem. On the other hand, inasmuch as the right-hand side is
known with a certain approximation, the solution v(r) must be consistent with the accuracy with which the
input data are specified.

An analogous problem is met in the solution of other linear inverse heat-conduction problems [2-6].

We now synthesize a regularizing algorithm for the solution of Eq. (1). We base it on the general
deviation principle developed by Morozov for the solution of operator equations by the regularization method
7, 8.

Assuming that the required function has a definite smoothness, we adopt as the admissible class of
solutions the Sobolev space Wi(r, Tm] of generalizzd-diffeventiable functions. We assume that the input
data belong to the space Ly[r,, Tp,} of functions integrable in the square. We also assume that the integral
operator with kernel K(r, £) is defined on the entire space W} and that an operator Aa[u] uniformly ap-
proximating the initial operator has been constructed, i.e., that the following condition holds for the norm
of the difference of the operators:

| Ape —AlL, < % (Av),

where w(AT) — 0 as AT — 0,

Finally, it is required that the following inequality hold for the deviation of the approximate input
data from the "exact" data:
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We consider the expression
Tm

A = { {Ap, [ (0] — Fy(®)}2 dr,

in which @ is the solution of (1) corresponding to the "exact" right-hand f.

By the triangular rule we have

A [ {Ax u@ — Al @ dv+ [ {AluE)]

— fe())dr < % (Av) Xm@(r) dv 4 8.

Normally for the solution of inverse heat-conduction problems it is always possible to approximate
the operator A with an accuracy such that

% (At) L 8.
We assume hereinafter, therefore, that

A L4 (6)

Regarding (6) as a condition generating a set of formal solutions u € Wr21 of (1), we segregate from it
the function ugas realizing the lower bound of the functional
Ty 2 .
inf s — e = [ [ 3 ) (e — w2 dr. (7)
T, i=0
Equation (7) corresponds to the minimum deviation of the required element ugar from the element u* speci-
fied in W? metric.

The operator A[u] is linear and continuous, so that the stated problem is uniquely solvable [7, 9].
The sequence of approximate solutions in this case converges strongly to the exact solution of (1):
limug,, =t
6,AT-+0

in Wiir,, T,,] whence we also infer their uniform convergence together with the derivatives of order up to
and including (m—1).

The formulated quadratic programming problem (6)-(7) is reduced to a problem in the form of the
regularization method of A. N, Tikhonov if we allow [9] for the fact that the function usa; corresponds to
the strict equality in condition (6).

Invoking the method of Lagrange multipliers, we arrive at the followingv variational problem:

1;16133 {CDa[u, fsl= f[i K(v, Qu(E)de—] 6(T)]2d17
o [ [SEEEE —w)’ ] e}, (8)
T, =0

in which @ = 1/A (A is a Lagrange multiplier) is determined from the condition

gm { f K (7, E)ug(E)de — fﬁ(,c)}z P .

To To

Expanding the difference squared in the first term of (8) and changing the order of integration over
the triangular domain, we obtain
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We write the Euler equation for {10), We have as a result
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Noting that the domain of integi «tion for the multiple integrals has the form of a rectangular trapezoid
and changing the order of integration, we finally obtain

(K& D@ + (Kt Du@d—5@
v “i (— 1V [Ry(B) (1 (&) — u¥() D) =0, (11)
=0

where
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g
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The boundary conditions for the solution of (11) are
U(tg) =ty U(Ty) =ty ..., B = ufthy

() =ty W (G =y oy 407D (1) = ufe=.

If it is too difficult to specify the zeroth approximation to the required heat flux q(r) [the surface tem-
perature Ty (1) or the thermal potential density v(r)], we can set u*(r) = 0. In this case we obtain the pri-
mary regularized solution wy, (r). To obtain the next-higher approximation we logically use wy(7) as u* (1),
We then obtain the secondary regularized solutionuyq(v), and so on.

The upper summation limit in the second integral terms of (11) corresponds to the regularization
order. Ifn = 0(W)= L,), then the square deviation of the required solution from the given approximation
is minimized. In this case the convergence of the r~gularized approximations does not necessarily imply
their uniform convergence. In general, the number n and the functions k;(¢) have to be selected on the basis
of the specifics of the particular inverse heat-cor uuction problem as well as the existing a priori information
about the nature of the required function, It could be required, for example, that the solution have reason-
able smoothness in the sense of minimizing the expression [4, 10].

Tm Ty
ju’(f)ga'r or j‘u"(r)zd’c.
To To

The choice of approximation to the required solution by the deviation principle requires knowledge of
the error of the initial data. In L, metric
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where o(r) is the rms error of the right-hand side of (1),

If o varies appreciably with time, it may prove convenient {for example, so as not to "oversmooth"
the solution) to find the regularized approximations by intervals, in which certain average values of oy are
delimited:

Uga(T) ,LTLTY oy = (o),
<7

< Ty ay = [(0y),

u(t) =

uaz(T) T

Uen(T) Ty <TL T oy =[(0).
We now consider certain aspects of the computer implementation of the given method for the solution
of (1) in application to inverse heat-conduction problems.

Writing the finite-difference equivalent for Eq. (11) in the general case and solving it for known boun-
dary conditions, we determine the grid function ud7(r). However, a more efficient computation algorithm
can be obtained if we use for regularization the approximation solution constructed for the direct problem of
computing T(x;, 7) from a known function u{r) with allowance for the possibility of integrating K(r, £) analy-
tically on a selected interval (rjy, 7. \

Thus, for problem (10) putting 7, = 0, we can approximately write [7]
Yo =F n=12 ..., m (12)

where

n = f(Tn) —z (x1’ Tn)’

‘ - x—X p=i=l
" - alt it { ,_1__1}
@ V' ant {Vn pe 9 } aht ({1 — p) p=i

Considering the first-order regularization n = 1 for (12) and choosing k, = 0 and k; = 1, we write the
finite-difference form of the functional (8):
n o \2

At (T _ N o ]2 X (‘_’i_1“"i)
@' [v, F] = E {Z v, —F, ] At +ocz———~———m . 13)

n=l =1 i=l

Setting the derivative with respect to ¥; equal to zero and assigning the boundary conditions

o~ Vir1 —V
=0, V(n)~ I =0,

v, — ¥

At

v'(0) ~
we arrive at the following system of linear algebraic equations with a symmetrical positive definite matrix:

m
Fapvi=Fp k=12 ..., m (14)
I=1

in which

e

m
= AN orer, 1 >k+2,
n=l
m
a,h=A122(p;:cp?——oa, l=Fk+1,
n=l

m
a1k=At22((p7)2+2oa, ==1; m,

n=l

auzA‘rzE((p’l‘P—]—oc, l=1;m,

n=]
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The number ¢ corresgponding to the best approximation of the solution in the seuse of a deviation in the form
of Eq. (9) is found from the condition

~ T 1/2 . '\
min A HZ; Zlcp,x F) J 8-
n==, L=z
The arbitrariness inthe designation of the boundary conditions for the minimization of (13) necessarily
distorts the form of the required function at the end points of the given time interval. However, as numeri-
cal experiments have ghown, that distortion is confined to relatively smallneighborhoods of7, and 7.

NOTATION

is an integral operator;

is the thermal diffusivity;

is the set of input data;

is the heat flux;

is the absolute temperature;

is the solution of the integral equation;
is a trail solution;

is the coordinate of the moving boundary of the body;
is the instantaneous coordinate;

is the regularization parameter;

is the error of the input data;

is the time step;

ig the thermal conductivity;

is the thermal potential density;

is the time.

[ = L BN

" 5

b I - P e I
-}

LITERATURE CITED

L. I. Kamynin, Izv. Akad. Nauk 3SSR, Ser. Matem., 28, 721-744 (1964).
M. Stoltz, Trans. ASME, Ser. C:J. Heat Transfer, 82, No. 1, 20 (1960).
J. V. Beck, ASME Paper No. HT-46 (1962).
E, M. Sparrow, A. Haji-Sheikh, and T. S. Lundgren, Trans. ASME, Ser. E: J. Appl. Mech., 86
No. 3, 369-375 (1964),
A. N, Tikhonov and V. B. Glasko, Zh. Vychislit. Matem. i Matem. Fiz., 7, No. 4, 910-914 (1967).
6. G. T. Aldoshin, A. S. Golosov, and V. I, Zhuk, Heat and Mass Transfer [in Russian], Vol. 8, Nauka
i Tekhnika, Minsgk (1968).
7. O. M. Alifanov, in: Studies in Convective Heat and Mass Transfer [in Russian], Nauka i Tekhnika,
Minsk (1971).
8, V. A. Morozov, Dokl. Akad. Nauk SSSR, 175, No. 6, 1225-1228 (1967).
9. V. A. Morozov, Zh, Vychislit. Matem. i Matem. Fiz., 8, No. 2, 295-309 (1968).
10, V. K. Ivanov, Zh, Vychislit. Matem. i Matem. Fiz., 6, No., 6, 1089-1094 (19686).
11. D. L. Phillips, J. Assoc. Computing Mach., 9, No. 1, 84-97 (1962).

™ Q) bho

wm
.

1571



